Azure AI Studio
Sample Usage​
Ensure the following:
The API Base passed ends in the
/v1/
prefix example:api_base = "https://Mistral-large-dfgfj-serverless.eastus2.inference.ai.azure.com/v1/"
The
model
passed is listed in supported models. You DO NOT Need to pass your deployment name to litellm. Examplemodel=azure/Mistral-large-nmefg
Quick Start
import litellm
response = litellm.completion(
model="azure/command-r-plus",
api_base="<your-deployment-base>/v1/"
api_key="eskk******"
messages=[{"role": "user", "content": "What is the meaning of life?"}],
)
Sample Usage - LiteLLM Proxy​
Add models to your config.yaml
model_list:
- model_name: mistral
litellm_params:
model: azure/mistral-large-latest
api_base: https://Mistral-large-dfgfj-serverless.eastus2.inference.ai.azure.com/v1/
api_key: JGbKodRcTp****
- model_name: command-r-plus
litellm_params:
model: azure/command-r-plus
api_key: os.environ/AZURE_COHERE_API_KEY
api_base: os.environ/AZURE_COHERE_API_BASE
Start the proxy
$ litellm --config /path/to/config.yaml
Send Request to LiteLLM Proxy Server
- OpenAI Python v1.0.0+
- curl
import openai
client = openai.OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
base_url="http://0.0.0.0:4000" # litellm-proxy-base url
)
response = client.chat.completions.create(
model="mistral",
messages = [
{
"role": "user",
"content": "what llm are you"
}
],
)
print(response)curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "mistral",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}'
Supported Models​
Model Name | Function Call |
---|---|
Cohere command-r-plus | completion(model="azure/command-r-plus", messages) |
Cohere ommand-r | completion(model="azure/command-r", messages) |
mistral-large-latest | completion(model="azure/mistral-large-latest", messages) |